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SUMMARY

The etiology of chronic Inflammatory Bowel Diseases (IBD) remains unknown, with both
genetic and environmental risk factors having been implicated. A recent collaborative study
of IBD provides clinical data from families with three or more affected first-degree relatives.
The scientific question is whether specific clinical characteristics aggregate among affected
individuals within families. Gastroenterological researchers have examined the number of
concordant familial pairs in familial aggregation studies, but methods and results have been
discrepant. This article investigates concepts of concordance and gives a comprehensive
statistical treatment for testing concordance of various clinical traits in familial studies.
For dichotomous traits, the distribution of this statistic under the null hypothesis of no
familial aggregation is obtained by three methods: asymptotic, probability generating func-
tion, and permutation. The permutation method is extended to analyze aggregation for
non-dichotomous traits and co-aggregations between two traits. We apply the permutation
method to analyze the aforementioned multiply-affected IBD family data. Evidence is found
for familial clustering of various traits, some of which are not revealed in existing studies.
Such analyses provide a basis for investigating the dependence of trait aggregation upon
genetic or environmental risk factors.

Keywords: concordance; probability generating function; familial association; inflammatory
bowel disease; random permutation

1.  INTRODUCTION

Crohn’s disease (CD) and ulcerative colitis (UC) are two major types of chronic inflamma-
tory bowel diseases (IBD). They may cause severe watery or bloody diarrhea, abdominal
pain, malnutrition, and even death. Clinical differences exist between CD and UC but also
among subtypes within each disease. The etiology of IBD remains poorly understood. It
is likely that multiple risk factors and/or etiologies are operational (Russell and Satsangi,
2004). Further identification of homogeneous subtypes would be useful for epidemiological
studies, particularly genetic association studies which depend upon homogeneous subgroups
for identifying associations.

The International Organization for IBD (IOIBD) Multiplex Families Project is an inter-
national collaborative study of IBD families. The study has developed a database of families



comprising three or more affected first-degree relatives from 17 centers world-wide: Copen-
hagen, Dublin, Towa City, Keio, Lille, Leuven New York, Orebro, Oslo, Oxford, Paris St.
Antoine, Regensburg, Rome, San Giovanni Rotondo, Toronto, Vienna, and Winnipeg. All of
the families are Caucasian except one from Japan. The underlying assumption of such a data
collection scheme is that genetic and environmental risk factors for IBD are stronger among
multiply-affected families. This may also manifest itself as shared disease characteristics
among affected relatives. Medical records of all affected individuals were carefully reviewed
to verify diagnosis. Ascertainment of subjects was not based upon any of the specific clinical
characteristics to be analyzed here, except for having the diagnosis of IBD. We emphasize
that only IBD-affected subjects are included and that all families in the dataset have three
or more affected first-degree relatives. There are 238 families and 769 subjects, among which
197, 32, 5, 3, and 1 families have, respectively, 3, 4, 5, 6, and 7 affected members. Each
family represents an independent pedigree; no extended pedigrees were included as much as
could be determined. Researchers are interested in testing the familial aggregation of IBD
clinical characteristics, which may lead to better understanding of the etiology of IBD. The
clinical traits of interest are listed in Table 1; see the Application section for more details.

Gastroenterologists have employed concordance rates to study familial aggregation in
this context. Previous concordance studies have led to various conclusions (Bayless et al.,
1996; Lee and Lennard-Jones, 1996; Peeters et al., 1996). The definition of concordance
has sometimes differed. Some (Lee and Lennard-Jones, 1996) have defined concordance as
unanimous trait sharing among all family members. Others (Bayless et al., 1996; Peeters
et al., 1996) defined the proportion of concordant familial pairs among all familial pairs.
Under the untestable assumption of independence between families, which is assumed in this
study as in many other familial studies, concordance analysis of the first type, at the “family
level”, is easier than the second type, at the “relative pair” level. This article addresses
concordance analysis at the level of relative pairs. The association of specific disease traits
among affected relative pairs within families is of explicit research interest.

We illustrate the set-up of the statistical problem using a dichotomous trait. Let Z be
the indicator variable for a certain clinical trait: Z = 1 for presence and Z = 0 for absence
of the trait. A relative pair is concordant in Z if both individuals have this clinical trait
(Z = 1). Absence of a trait in both members is not considered to represent any shared
risk factor under this definition and so is not considered as concordant. That is, only a
matching 1-1 pair is treated as concordance; neither 1-0 nor 0-0 is treated as concordance.
Let p = Pr(Z = 1) be the prevalence of this clinical trait among all affected subjects in the
study. For simplicity, assume that all families are of size k and that we observe this variable
for n; families. Among all n, (g) within-family pairs, we count the number of concordant
relative pairs X,,. The statistical question is whether the observed X,, is significantly
greater than expected under the null hypothesis:

Hj : the presence of the clinical trait Z is randomly assorted across families. (1.1)

Published concordance analyses of IBD in the gastroenterology literature have mostly
used population-based estimates of phenotypic trait prevalence to construct reference dis-
tributions for concordance rates under Hy in (1.1). Subjects with diagnosis of IBD in a
multiplex family study however, are clearly a high-risk group, which makes it inappropriate



to use population-based reference distributions for these clinical traits. Furthermore, the
reference distributions have been mostly based on asymptotic results, whose validity may be
in question for rare traits with p close to zero. Practitioners need guidelines on when it would
be appropriate to apply the asymptotic results. If the asymptotic results are inappropriate,
a robust method which is not sensitive to rare traits is needed.

In the IOIBD study, there are other practical issues to be solved. First, there are non-
dichotomous traits such as multichotomous, ordinal, or continuous traits. For example, the
disease “behavior” type in Crohn’s disease (disease “behavior” is a commonly utilized clas-
sification scheme in CD to describe key clinical features of the disease) is a multichotomous
variable with 4 possible outcomes, the number of surgeries is an ordinal variable, and age
at diagnosis is a continuous variable. Second, some groups of relative pairs are of particular
interest. For example, siblings are the first-degree relatives at highest risk of developing IBD
(Russell and Satsangi, 2004). Third, it is clinically significant to determine if concordance
in 7, is associated with concordance in Z,. This need arises when two clinical characteris-
tics are both determined to aggregate within families and the two traits are also known to
be clinically associated with each other (Louis et al., 2003). Demonstration of this implies
co-aggregation of the two clinical traits (Hudson et al., 2001).

The goals of this article are three-fold. First, for dichotomous traits, we provide guidelines
on using the normal approximation of the distribution of X,,, under Hj by investigating three
methods: asymptotic, probability generating function (PGF), and permutation. Second, we
extend the permutation method to solve the practical issues in the concordance analyses of
the IOIBD study. Finally, we analyze the multiplex data from the IOIBD study using the
proposed permutation method.

This article is organized as follows. Dichotomous traits are considered in Section 2: the
large sample result is presented in Section 2.1; the PGF method is presented in Section
2.2; and the random permutation method is presented in Section 2.3. Extensions of the
permutation method in three directions are presented in Section 3: non-dichotomous traits,
partial permutation, and bivariate permutation for concordance association. These methods
are applied to IOIBD data in Section 4. A discussion concludes in Section 5.

2. TESTING FOR DICHOTOMOUS TRAITS

In this section, we consider testing Hy in (1.1) for a dichotomous trait Z using the asymp-
totic method, PGF method, and permutation method. For simplicity, assume that there
are ny, families of size k and let X, be the number of concordant familial pairs. The null
distribution of X,,, obtained from the asymptotic method and the PGF method are uncon-
ditional, depending on a consistent estimate of the clinical trait prevalence p. In contrast,
the null distribution obtained from the permutation method is conditional given the number
of individuals with Z = 1.



2.1  Asymptotic method

For a family of size k > 2, consider Ny, the number of concordant pairs within this family.
Let yux = E(Ng) and 0 = Var(Ny). It can be shown that py, = (5)p® and
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A proof is sketched in Appendix A. An alternative but equivalent form of (2.1) is given
in Hunt et al. (1986). Let {Ny; : i = 1,...,n,} be a sequence of independent random
variables with the same probability distribution as Nj. The total number of within-family
concordance pairs is then X, = > "% Nj.. By the central limit theorem, when ny is large,
X, 1s approximately

Koy ~ N(nfig, n07).- (2.2)
In a more practical setting, we observe n families, among which there are n; families of
size k for k = 2,..., K. Suppose the proportion of families with size k, ny/n, goes to some

limit 7, for large n. Then, as n gets large, the total number of within-family concordance
pairs from all n families, X,, = >, | X, , is approximately

K K
X, ~N (Z Nk b anai) ) (2.3)
k=1 k=1

Application of (2.3) needs guidelines for when the approximation is adequate. A prelim-
inary analysis of the IOIBD study data (Tamboli et al., 2005) used a jackknife method to
obtain the variance estimate of X,,. The inference, however, is still based upon a normal
approximation, which may be inherently inappropriate if the normal approximation is poor.
This is similar to the case of normal approximation of a binomial distribution, where it is
well-known that the mean of the binomial distribution needs to be at least 5 for the normal
approximation to work well.

In order for (2.3) to be a good approximation, the normal approximation of X, in (2.2)
needs to be good for each k. Assume that n;p? goes to some constant as n — oo and p — 0.
Heuristically, normal approximation of the distribution of a positive discrete random variable
can only work well if zero is at least two standard deviations away from the mean. That is,
we require nyu,, > 24/n,0:. Note that as p — 0, the first term of o7 in (2.1) is of order p?
while other terms are of order o(p?). Therefore, a guideline for small p can be obtained as

ngp® > 4(2)_1. (2.4)

Therefore, we need nyp? to be at least 5, 2, and 1, respectively, for family of size k = 2, 3,
and 4. Continuity correction is critically important when n;p? is small. In cases where n;p?
is extremely small, the exact distribution of X, is very skewed and a normal approximation
is hopeless. This guideline (2.4) can be graphically illustrated by comparing the normal
approximation to the exact distribution.

Figure 1 presents the normal approximation overlapped with the exact distribution of
X, obtained from the PGF method for families of size & = 3. The number of families ny,
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takes two values: 100 and 200. The prevalence p takes three values 0.1, 0.2, and 0.4. From
Figure 1, one observes that the approximation improves as p increases or ny (and hence
n) increases. For all three prevalence values, the normal approximation density is higher
at the left tail and lower at the right tail than the exact distribution. Consequently, the
p-value of an observed value of X,,, on the right tail from an normal approximation is lower
than the true p-value, which, particularly for small n and p, may lead to false discoveries of
significance.

In practice, parameter p is unknown, and needs to be substituted with a consistent
estimator p. A convenient choice for p is the usual proportion estimator for binomial distri-
butions.

2.2 Probability Generating Function Method

When the prevalence p is known, the exact distribution of X,,, and X,, can be obtained from
the PGF method. A similar approach has been developed in a different context to test the
clustering of affected siblings and has been applied to IBD by Hugot et al. (2002).
For a discrete random variable N taking values in {0, 1,2, ...}, the PGF G of N is defined
by
Gy(t) = E(t") =) Pr(N =n)t".
n=0

Consider N, the number of concordant pairs within a family of size k. The PGF of Nj is

k
k k _ kN (i
Gt = | (g)a=m+ (§)pa-p| e 3 (F)pa-pront,
j=2
Then by independence between families, the PGF of X,,, = > " Ny, is

Gx,, () =[G, ()] (2.5)

This function is a polynomial of ¢. The probability mass function of X, can be determined
from (2.5):
Pr(X,, = z) = the coefficient of ¢ in G, (t).

Similarly, the PGF of X,, = >0 | X,,, is
K
G (®) = [ 1[G ()™

k=1

and the exact distribution of X, is determined by
Pr(X, = ) = the coefficient of t* in Gx,, (t).

The PGF method can be implemented in any software that can perform symbolic cal-
culations, such as Mathematica (Wolfram Research, Inc., 2005). For illustration, the exact
distributions of X,,, are presented in Figure 1 in contrast to the normal approximations for
families of size k = 3. A sample Mathematica session is given in Appendix B to show its ease
of use in practice. Similar to the asymptotic method, this method depends on the unknown
parameter p, which needs to be substituted with a consistent estimator p.
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Figure 1: Normal approximation and exact distribution of the number of concordant relative
pairs in families of size & = 3. The number of families n; is 100 and 200. The clinical
characteristic prevalence p is 0.1, 0.2, and 0.4.



2.3  Permutation Method

Resampling methods are an important tool in medical research (Berger, 2000; Good, 2001;
Pesarin, 2001). An intuitive perspective of the permutation method is to view the phenotypic
trait Z of a subject as a label. Under the null hypothesis Hy of no familial clustering, the
labels of individual subjects are exchangeable. That is, the label Z can be randomly assigned
across families. Each permutation of the label Z is a way for such assignment. For each
permutation, the test statistic X,, can be computed. Note that the number of presence
labels (Z = 1) remains unchanged from permutation to permutation. Therefore, the null
distribution of X,, obtained by exhausting all (32, nik)! permutations is conditional, given
the total number of presences. This distribution is used to evaluate the significance of
the observed statistic X,, = x,, and give its p-value. When families have different sizes,
the permutation method can be applied without any change to give the significance of the
observed statistic X,,.

For large n, however, it is impossible to exhaust all the permutations. In practice, we
draw a large number of random samples from all possible permutations to approximate the
conditional null distribution of X,,. Monte Carlo error is introduced in this procedure and
can be controlled by increasing the number of random permutations B. There are methods
to determine the necessary size B for decision making at a given significance level « (see,
for example, Besag and Clifford, 1991; Nettleton and Doerge, 2000). In this article, we
use B = 10,000, which gives stable results in the analyses and leaves rooms for Bonferroni
adjustment for multiple tests.

Under the same configurations as in Figure 1, Figure 2 presents a Monte Carlo approxi-
mation of the conditional null distribution of X,, using B = 10,000 random permutations,
given that there are n,kp individuals with Z = 1. The unconditional asymptotic normal ap-
proximation in Figure 1 is overlapped to highlight the difference between the unconditional
and conditional distribution. The approximate conditional distributions are clearly tighter
than the unconditional distributions. This is not surprising, since the number of presences
is fixed at nikp in all permutations. The skewness properties of the distributions in Figure 2
are similar to those in Figure 1. The asymmetry is alleviated as p increases or n increases.
For p > 0.2 and n > 100, the distributions look more symmetric.

The permutation method differs from the asymptotic method and PGF method by not
requiring estimation of p. Therefore, it is not affected by the sample size n and the pheno-
typic trait prevalence p. The method is easy to implement in any computing environment. It
does require a large number of permutations for a good approximation of the reference dis-
tribution, but for the problem considered in this article, it is not computationally demanding
by modern statistical computing standards.

An additional advantage of the permutation is that the method is still valid when there are
missing values (NA), which may or may not be missing completely at random. For instance,
missing may be more likely to happen when a trait is presence for a subject than otherwise.
The permutation method can treat NA as a special value which does not contribute to
concordance. Under H, subjects are still exchangeable, whether or not their clinical traits
are missing. The null distribution can still be approximated by random permutations to
assess the significance of the observed number of concordances.

It is a common need to control the effect of some demographic factors such gender and
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Figure 2: Approximation of the conditional distribution of the number of concordant relative
pairs in families of size kK = 3. The size of the random permutation sample is B = 10, 000.
The number of families ny is 100 and 200. The clinical characteristic prevalence p is 0.1, 0.2,
and 0.4. The unconditional asymptotic normal approximation in Figure 1 is overlapped to
highlight the difference between the conditiorgl and unconditional distributions.



age. For categorical covariates with a small number of levels such as gender, one simply
constrains the permutation to subjects who are in the same level of the covariate (Lynch
et al., 1981, 1986; Schwartz et al., 1988). For a continuous covariate, one need to stratify it
into several categories and constrain the permutation of a clinical trait within each category.
For example, the variable age can be discretized into young and old groups by the medium
age. To otherwise incorporate covariates, regression analysis is generally required.

3.  EXTENDING THE PERMUTATION METHOD

3.1 Concordance of Multichotomous, Ordinal and Continuous Traits

In the IOIBD study, some traits are multichotomous, continuous, or ordinal. Let Z now be
such a trait. The more general null hypothesis is

Hj : the clinical character Z is randomly assorted across families. (3.1)

The testing statistic is still the number of concordant relative pairs X,,, given an appropriate
definition of concordant pair in this trait. A concordant pair in a multichotomous trait,
disease “behavior” type, may be defined as a pair who have the same subtype of the trait.
A concordant pair in a continuous trait, age of diagnosis, may be defined as a pair whose
age at diagnosis are at most 2 years apart. A concordant pair in an ordinal trait, number
of surgeries, may be defined as a pair who both have had surgery and whose number of
surgeries differ by at most 1. With these new concordance definitions, one can proceed with
the permutation method to test Hy in (3.1).

It is also possible to use some other statistic which measures the sum of pairwise distances
between family members. Let Z;; be a continuous trait of the jth member in family i. An
example distance measure is S, = >, Z;né w(Zij — Zi)?, where m; is the size of family 4.

3.2  Bivariate Permutation for Concordance Association

The permutation method can be extended to investigate the association of concordance in
two clinical characteristics. It may be hypothesized that if concordance in trait Z; and
concordance in trait Z, are seen concurrently more often than expected by chance, then the
two traits co-aggregate. The null hypothesis is

Hj : the familial aggregation of Z; and Z, are independent. (3.2)

For ease of presentation, consider first the case where there are only n;, families of the same
size k. A reasonable test statistic is the number of relative pairs Y, that are simultaneously
concordant in both Z; and Zs. When Hy in (3.2) is not true because of co-aggregation of
these two characteristics, Y,,, is likely to be higher than expected by chance. It is crucial
to determine the reference distribution of Y,, under (3.2) without changing the familial
association property of both variables as regards the concordances. A two-stage random
permutation is thus designed for this purpose. In the first stage, permutation is done at
the family level, i.e., the Z; labels of each family as a group are randomly re-assigned to a
different family identity. In the second stage, the Z; labels are randomly permuted among
individuals within each family. The random permutation of the Z5 labels can be done in



the same way Clearly, this method preserves the number of concordant pairs in Z; and Z,,
but the number of pairs simultaneously concordant in Z; and Z, changes from permutation
to permutation. A large number of such permutations provide a reference distribution for
Y, under the null hypothesis of no concordance association, given the observed number of
concordant relative pairs in each trait. The observed number of simultaneous concordant
pairs y,, is then positioned against this reference distribution to give a p-value.

In the general setting where the n families consist of ny families of size k for k =2,..., K,
we use the statistic Y,,, the total number of simultaneous concordant within-family pairs in
Z1 and Z,. The reference distribution of Y, is still obtained from the two-stage permutation,
except that in the first stage, families of the same sizes are permuted separately. The method
is valid when there are a few very large pedigrees. For example, in the IOIBD data, there
is only 1 family of size 7 and variable values of subjects in this family are permuted within
the family.

4. ANALYSIS OF THE I0IBD DATA

The clinical traits of interest in the IOIBD study are summarized in Table 1. There are
21 variables: 14 dichotomous, 4 multichotomous, 1 ordinal, and 2 continuous. The 4 mul-
tichotomous variables all have 3 or more states. These variables have different domains of
relevance. For IBD and its two main types, CD and UC, a mark “/” indicates that a variable
is relevant.

Table 2 presents frequency summaries for several aspects of the IOIBD data, such as the
composition of gender, relation, and some multichotomous variables. Due to missing values,
the total number of observations for each variable is not necessarily equal to the total number
of subjects in the relevant domain.

Out of the 39 clinical traits to be analyzed for three relevant domains in Table 1, 25
have less than 5% missing values and only 3 have greater than 10% missing values. The 3
traits with heaviest missingness are all for CD: uppertract (23.7%), aza6mp (20.75%), and
behaviour (16.8%). For traits with non-negligible amount of missing values, it is necessary to
investigate whether the missingness was missing completely at random (MCAR) (Little and
Rubin, 2002). For example, for upper tract involvement (uppertract), missing is more likely
to happen when the trait is absent than when it is present. Fortunately, with missing value
treated as a special value which does not contribute to concordance counts, the permutation
method is still valid, although the power of detecting familial aggregation may be low.

To apply the permutation method on non-dichotomous traits, concordance in these vari-
ables needs to be defined. A relative pair is defined as concordant in a multichotomous
variable if their values are both non-zero and match exactly. Note that variables patype and
and smoker have state zero, indicating no involvement and non-smoker, respectively. A rela-
tive pair is defined as concordant in surgcount if their values of surgcount are both non-zero
and have difference within a threshold. The two continuous variables, symptom duration
(sympdur) and age at diagnosis (ageatdx) are constructed from patients’ age, diagnosis time,
and calendar time. A relative pair is defined as concordant in a continuous variable if the
values of the variables in the pair have difference within a threshold. In this paper, we define
the threshold for surgcount and other time-related continuous variables as 2 surgeries and 2
years, respectively.
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Table 1: Summary of clinical trait types and their domains of relevance in the IOIBD study.

Variable Name Variable Interpretation

IBD CD UC

uppertract
termileum
rectum
leftcolon
extcolon
perianal
ctrlarth
prphlarth
cutaneous
ocular
surgery
azabmp
mtx

dx
patype
behavior
smoker

surgcount

sympdur
ageatdx

Dichotomous variables
upper tract involvement
terminal ileum involvement
rectal involvement
left colonic involvement
extensive colonic involvement
perianal involvement
central arthritis
peripheral arthritis
cutaneous involvement
ocular involvement
history of resection surgery
azathioprine or 6 mercaptopurine use
methotrexate use
Multichotomous variables
diagnosis (CD, UC, or indeterminate colitis)
type of perianal involvement (none, abscess, or fistula)
CD “behavior” (stenosing, fistulizing,
fistulizing & perianal, or inflammatory)

smoking status (non, ex, or current)

Ordinal variables
number of surgeries

Continuous variables

symptom duration
age at diagnosis

< L

D U SO

V
V

LU

D SR S U U

L LK

L <O <
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Table 2: Frequency summaries of the IOIBD data.

Variable  Subtype Frequency Variable Subtype Frequency
diagnosis CD 506 CD smoker  non 222
ucC 244 ex 113
indeterminate 18 current 144

gender female 404 UC smoker  non 129
male 365 ex 73

relation  proband 238 current 30
parents 97 CD behavior stenosing 118

siblings 316 fistulizing 42

children 118 fistulizing (perianal) 35

smoker non 361 inflammatory 226
ex 188 CD patype none 403

current 180 fistula 40

abscess 21

We first investigate the familial aggregation in each clinical trait. In order to have some
control of the effect of some basic demographic factors, we categorize subjects into categories
formed by the interaction of factors that we want to control for. The permutation is done
with the constraint that only subjects in the same category are permuted. For the IOIBD
data, out categorization is done from the interaction of three factors: 1) gender (2 levels,
male and female), 2) age (7 levels, 20 or below, 20-30, 30-40, 40-50, 50-60, 60-70, and
above 70), and 3) disease duration (6 levels, 0-5, 5-10, 10-15, 15-20, 20-25 and above 25).
Inclusion of disease duration as a control variable is desired by the clinicians to guard against
false determination of genetic anticipation (Picco et al., 2001). Since there are 20 missing
observation for this grouping variable, the permutation tests are done with the rest 749
subjects. They are from 238 families and there are 849 relative pairs in total.

Tables 3 summarize the permutation test results for all three domains of IBD, CD, and
UC. The hypothesis of no association is tested for three types of relatives pairs: all relative
pairs, parent-child pairs, and sib pairs. For each test, we report the observed number of con-
cordant relative pairs (NC), the mean of the statistic from B = 10,000 random permutation,
and the p-value of the observed statistic under the null hypothesis of no familial aggrega-
tion. The reported p-values are one-sided and represent the probability of the number of
concordant relative pairs being at least as many as the observed number NC. The observed
number of concordant relative pairs in the tables can be as small as 1 or 0. The permutation
method is not affected by the rare traits and remains valid, though the test result may not
be significant.

Results of these permutations tests suggest which of the clinical characteristics studied
aggregate within families. It is apparent that concordance is more prevalent among various
CD traits than among UC traits, and among sibling pairs. These findings are consistent
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Table 3: Summary of IBD familial aggregation testing with the permutation method. NC
is the observed number of concordant relative pairs. Mean and P-value are the mean and
one-sided p-value computed from 10,000 random permutations under no familial aggregation.

Trait All relative pairs Parent-child pairs Sib pairs
NC Mean P-value NC Mean P-value NC Mean P-value
IBD dx 662 463.9 0.0001 149 982 0.0001 387 276.4 0.0001

ageatdx 120 984 0.0076 10 109 0.6756 94 74.5 0.0074
sympdur 113 1114 04419 21 187 0.2993 76 78.5 0.6581
smoker 387 293.1  0.0001 92 61.1 0.0002 235 176.7 0.0001
ctrlarth 8 2.9 0.0120 0 0.6 1.0000 8 1.8 0.0019
prphlarth 71 378 0.0001 15 85 0.0192 45 221 0.0001
cutaneous 8 6.3 0.2787 0 0.8  1.0000 5) 4.1 0.3870
ocular 5 1.8 0.0315 1 0.3 0.2683 3 1.1 0.0967
surgery 186 157.3 0.0009 32 353 0.7635 122 954  0.0010
surgcount 78 685 0.0932 16 15.3 0.4567 48 40.4 0.1010
CD ageatdx 73 61.5 0.0513 4 5.0 0.7530 63  50.7  0.0255
sympdur 64 70.8 0.8607 7 7.7 0.6944 47 534 0.8916
smoker 213 159.4  0.0001 28.7 0.0003 138 103.6  0.0001
ctrlarth 4 2.0 0.1223 0.4  1.0000 4 1.3 0.0340
prphlarth 44 23.8  0.0002 5.7 0.0917 29 14.2  0.0001
cutaneous 8 5.1  0.1167 0.8  1.0000 5 3.3  0.2197
ocular 1 1.1 0.6744 0.1  1.0000 1 0.7  0.5291
surgery 154 139.4  0.0333 30.0 0.8564 100 86.7 0.0392
surgcount 61 54.9 0.1816 11.8  0.5239 39 33.5 0.1555
uppertract 15 7.0  0.0037 0.6 0.0047 10 5.1  0.0235
termileum 289 255.8  0.0001 49.2 04773 187 161.1  0.0004
perianal 22 8.8  0.0005 1.7 0.2379 17 5.7 0.0009
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patype 12 3.7 0.0012 0.9 0.0608 7 2.2 0.0118
behaviour 190 1254  0.0001 3 22.2 0.0010 117  78.7 0.0001
azabmp 7 61.0 0.0119 6.2 0.1815 54 441 0.0387
mtx 4 1.8 0.0866 0.2 0.0138 2 1.2 0.3522

extcolon 135 108.2  0.0002
UC  ageatdx 28  18.7  0.0097
sympdur 24 213 0.2693

16.9 0.5293 94 71.9 0.0007
3.5 02589 17 114  0.0359
5.8 0.0842 13 13.0 0.5625

smoker 93 784 0.0130 2 21.3  0.2646 50 41.9 0.0399
ctrlarth 1 0.1 0.1343 0.0  1.0000 1 0.1 0.1011
prphlarth 14 79 0.0174 2.5 0.0798 5 4.3 0.4308
cutaneous 0 0.0 1.0000 0.0 1.0000 0 0.0 1.0000
ocular 1 0.3 0.2801 0.1  1.0000 0 0.1  1.0000
surgery 12 9.7  0.2297 2.4 0.9400 9 5.2 0.0692
surgcount 7 5.2 0.2358 1.3 0.7566 4 3.2 0.3835
rectum 0 0.0  1.0000 0.0  1.0000 0 0.0  1.0000

leftcolon 48 44.8  0.2459
extcolon 21 16.4  0.0867

—_

11.7  0.0880 28 24.1 0.1648
3.6 09790 14 8.9  0.0380
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with IBD literature which shows stronger familial and genetic influences for CD than for UC
(Russell and Satsangi, 2004). Our methodology has also uncovered new familial associations
not previously described. We report upon aggregation of many extra-intestinal features
of IBD not previously reported, and we demonstrate interesting familial aggregations of
some of these traits with respect to generational subsets. For example, peripheral arthritis
(prphlarth) aggregation occur in sibling pairs but not parent-child pairs in CD group. Results
such as these can deduce the higher importance of environmental influences on this trait
since parent-child pairs share similar percentage of genes as sib-sib pairs (unless they are
monozygotic twins, but very few such pairs are included in this cohort). As well, siblings
are likely to share environments to a much greater extent than parent-child pairs. Firstly,
parents have a unique exposure history even prior to their children’s births. Second, sibs’
school environments are likely to be similar if they are of similar ages, which is a unique
environment from the parent’s workplace.

In the first phase of this IOIBD project, the clinicians were most interested in exploring
familial aggregation of all clinical traits rather than controlling the false discovery rate. Thus,
multiple testing was considered a secondary issue in this analysis. Nevertheless, we have run
the analysis with B = 10,000 random permutations such that the minimum possible p-
value is 0.0001 to allow room for Bonferroni adjustment. There are 117 p-values reported in
Table 3. One can make the Bonferroni adjustment by simply inflate each p-value by a scale
of 117. This implies that only those p-values which are 0.0004 or below in Table 3 lead to
a significance level of 0.05. Of note is that Bonferroni adjustment is by nature conservative
and should not stop clinicians from further investigating those detected aggregations which
become insignificant after the adjustment.

We now investigate the association of concordances in two clinical characteristics. This
part of the analysis is for exploratory purpose. We use the two-stage permutation without
grouping constraint. The permutation is done on all 769 subjects. Table 4 summarizes the
testing results for IBD, CD, and UC traits. For each pair of traits, we report the observed
number of concordant relative pairs in trait 1 (NC1) and trait 2 (NC2), and the observed
number of relative pairs that are simultaneously concordant in both traits (NSC). Under
the null hypothesis of no concordance association between traits 1 and 2, the mean of the
statistic NSC and one-sided p-value of the observed NSC are obtained from the B = 10, 000
random permutations. Only pairs of traits with p-values 0.10 or lower are shown.

It can be concluded for example, that concordance in the number of surgical resections
(surgcount) significantly co-aggregates with concordance for the same diagnosis (dx) among
family members in the entire IBD group, and co-aggregates with concordance for terminal
ileum involvement (termileum) in the CD subset. These findings support well-recognized
phenomena that CD individuals are at risk for multiple surgeries, while those with UC typ-
ically have no more than one intestinal resection, and that terminal ileum involvement in
CD presents a higher risk for requiring multiple resections. In this example, the bivariate
permutation analysis demonstrates significant familial co-aggregation for a continuous vari-
able surgcount with two other key traits, despite its own lack of familial aggregation, at
significance level 0.05, in univariate concordance analysis for IBD, CD or UC subgroups.
Identification of such trait co-aggregations may have utility in testing genotype-phenotype
correlations where phenotypic heterogeneity can often mask true associations, or as an al-
ternative method for testing gene-environment interactions. Co-aggregation of two traits
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Table 4: Summary of testing the association of concordance in two clinical traits. Only pairs
with p-value below 0.10 are listed. NC1 and NC2 are the number of concordant relative
pairs for the two traits, respectively. NSC is the number of relatives that are simultaneously
concordant in the two traits. Mean and P-value are the mean and one-sided p-value computed
from 10,000 random permutations under no association of concordance.

Trait 1 Trait 2 NC1 NC2 NSC Mean P-value
IBD dx smoker 695 406 322 312.34  0.0956
dx ageatdx 695 120 102 93.28  0.0264
ageatdx dx 120 695 102 93.36  0.0304
prphlarth  extcolon 75 210 24 17.18  0.0854
cutaneous  extcolon 10 210 6 2.26  0.0237
surgery dx 196 695 172 153.56  0.0016
surgery ageatdx 196 120 36 26.83  0.0243
surgery extcolon 196 210 66 48.59  0.0073
surgcount  dx 80 695 70 6241  0.0259
CD  uppertract ageatdx 15 73 5 2.26  0.0656
uppertract behav 15 192 11 5.46  0.0090
termileum  behav 296 192 130 117.08 0.0158
extcolon behav 140 192 69 55.53 0.0118
perianal extcolon 22 140 11 6.88  0.0687
patype behav 12192 12 5.65  0.0022
patype extcolon 12 140 8 3.48 0.0115
prphlarth  uppertract 48 15 4 1.36  0.0595
cutaneous  extcolon 10 140 6 2.86  0.0519
surgery ageatdx 160 73 29 2332 0.0917
surgery extcolon 160 140 55 46.24 0.0714
surgery termileum 160 296 121  99.59  0.0001
surgcount  termileum 63 296 48  39.71  0.0175
azabmp smoker 78 225 42 34.79  0.0613
azabmp extcolon 78 140 30  21.40 0.0289
azabmp termileum 78 296 52 4543  0.0965
UC  extcolon smoker 21 95 15 9.96 0.0208
surgery extcolon 12 21 4 1.25  0.0495
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might also be of clinical utility from a predictive standpoint. For example, an individual
who is concordant with a sibling for extensive colonic involvement (extcolon) appears at
higher risk of requiring surgery if the sib had surgical resection. Although the directionality
of association between extensive colonic involvement and surgical resection seems clinically
intuitive in this example and is suggestive that there is a causal relationship (i.e. extensive
colonic involvement would predate and predict a higher likelihood of requiring surgery and
also that lesser extent of involvement — leftcolon and rectum — were not associated with
surgery in this bivariate analysis), this type of conclusion is not as straightforward for other
sets of covariates. Causality, in general, cannot be inferred from this type of analysis. A
formal causal inference along the line of Holland (1986) in the context of familial studies
is worth investigating. Application in clinical and epidemiological studies are, for example,
Little and Rubin (2000) and Maldonado and Greenland (2002). A recent book treatment is
Rubin (2006).

5. DISCUSSION

This article presents a thorough treatment on the statistical analysis based on the num-
ber of concordant relative pairs in testing familial aggregation of clinical characteristics.
The statistic has been used in the gastroenterology literature, with an asymptotic reference
distribution constructed from population based estimates. The validity of the asymptotic
normal approximation is a concern for traits with prevalence p close to zero. In the case of
dichotomous trait, by comparing the asymptotic and exact distribution of the test statistic,
we give guidelines for when the normal approximation is appropriate. For example, for n
families of size 3, we need np? > 5. That implies, if n = 100, a good normal approximation
demands a trait prevalence p > 0.224. The permutation method however, is not affected
by rare trait prevalence. It is thus recommended for its fewer assumptions, robustness, and
ease of implementation.

We have focused on the analysis of concordance counts with which gastroenterological
researchers are familiar, but it is worth pointing out other statistical methods applicable for
familial aggregation in such a context. Data from familial studies are clustered data with each
family being a cluster. When within-cluster association is of explicit interest, the generalized
estimating equations (GEE) approach can model the association parameter in addition to
the mean structure (Yan and Fine, 2004). The GEE approach is robust in that only the
mean and the covariance, instead of the full distribution, of the multivariate variable within
cluster are specified. Unlike the permutation analysis of concordance counts where covariate
effects can only be controlled in a limited way, GEE models allow covariates into both the
mean and the association parameters through appropriate link functions. For illustration,
consider the dichotomous trait terminal ileum involvement (termileum) for CD patients. We
can use a logistic regression to model the probability of having terminal ileum involvement
with covariates gender, age, and disease duration. To model the within family association,
we specify the pairwise log odds ratio by a regression model with indicators of relative pair
types as covariates. With the R package geepack (Halekoh et al., 2006), the estimated log
odds ratio (standard error) are 1.556(0.356) for sib pairs, 1.045(0.796) for parent-child pairs,
—0.483(2.247) for grandparent-grandchild pairs, 1.943(0.904) for uncle/aunt-nephew /niece
pairs, and —0.945(3.565) for spousal pairs. These results are consistent with those in Table 3:
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the log odds ratio is significantly nonzero between sib pairs but not so between parent-child
pairs. Continuous and categorical traits can be modeled similarly. The conclusions about
familial aggregation in all other clinical characteristics using the the GEE approach are
comparable to those in Table 3, except in a few occasions where the GEE model estimates
are unstable due to too few matched 1-1 pairs. GEE models have a clear advantage in
incorporating covariate effects. Since the inference of GEE is based on asymptotic normality
of the parameter estimate, one needs to be cautious when the trait is extremely rare and
concordance is even rarer, in which case, a very large sample is needed for the asymptotics
to be effective. Extreme rarity in traits and in concordance lead to unreliable parameter
estimates since logit link function for prevalence and log link function for odds ratio explode
near zero. Nevertheless, GEE can be applied to the IOIBD data and merits more attention
in general from gastroenterologists.

Another class of models which may be useful is the generalized linear mixed model
(GLMM) (e.g., Breslow and Clayton, 1993), also known as multilevel model (e.g., Gold-
stein, 1995). GLMM is a mixed effects extension of generalized linear models, with random
effects added on the linear predictor. A random effect can be assumed at the family level
which introduces association within family. In contrast to GEE, GLMM specifies the full
likelihood. Normal distribution is usually assumed for random effects. Inference for GLMM
is difficult because the likelihood involves integrating the random effects out, which cannot
be computed explicitly in general. Widely used maximum likelihood methods are penalized
quasi likelihood (PQL) (Breslow and Clayton, 1993) and Monte Carlo EM algorithm (Mec-
Culloch, 1997). The null hypothesis of no familial aggregation means that the variance of
the random effect at the family level equals zero. Under this null hypothesis the variance
parameter for the family level random effects is on the boundary of the parameter space, and,
as a result, the likelihood ratio test statistic has a non-standard null distribution (Self and
Liang, 1987). GLMM is able to accommodate association within clusters through random
effects in estimating regression parameters in the mean model, but when associations are of
explicit interest, GEE may be preferred for its milder assumption and easier implementation.

The permutation method for testing co-aggregation of two traits is admittedly a sim-
ple first thrust at the problem. For dichotomous traits, Hudson et al. (2001) proposed a
multivariate logistic regression based on a quadratic exponential distribution. Within the
framework of clustered data analysis, we can use GEE or GLMM for co-aggregation model-
ing as well. Keeping each family as a cluster, we can treat 2 or more traits from the same
subject as a sub-cluster. A working covariance structure models the association between
the traits can be assumed to carry out the GEE approach. Multivariate random effects at
the subject level, in addition to the random effects at the family level, can be assumed to
carry out the GLMM approach. Needless to say, implementation the likelihood inference of
such a GLMM approach with multiple random effects can be challenging. A compromise
is to use the composite likelihood (Lindsay, 1988), where, for example, pairwise bivariate
distributions are composed together without fully specifying the joint distribution within
cluster. Co-aggregation analysis with composite likelihood is an interesting direction for
future research.

In the IOIBD study, with data collected from multi-centers world wide, cultural differ-
ences and genetic heterogeneity may be considered after the familial aggregation in various
traits has been detected. King et al. (1984) approach genetic epidemiological studies from
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the point of view of three sequential questions: 1) Do diseases cluster in families? 2) Is
familial clustering related to common environmental exposure, biologically inherited suscep-
tibility, or cultural inheritance of risk factors? 3) How is genetic susceptibility inherited?
The classical approach to the problem has been to move sequentially through these questions
with varying study designs and analytical methods. If familial aggregation is demonstrated,
it would be appropriate to then explore the secondary questions. The IOIBD Multiplex
Family Study in its first completed phase reported here has dealt exclusively with the first
question, with respect to trait clustering within IBD families. Familial aggregation is a
proxy of shared genetic and/or environmental influences upon those traits. Thus, by design
our study’s demonstration of aggregation cannot decipher the relative effects of these two
influences. Some limited inferences regarding this are possible by comparing generational
subset concordances (i.e. sib-sib pair concordances versus parent-child concordances). More
importantly however, the demonstration that some traits are familial and others are not, can
properly direct future studies aimed more specifically at analyzing the relative importance
of genes, environment, and cultural effects upon disease phenotypes. A starting point would
be the first consideration of those traits most strongly shared among families, with either
exclusion of non-familial traits or stratification/controlling for non-shared traits which might
act as confounders or contribute to unwanted heterogeneity in genetic association studies.

Our study has intentionally not attempted to address the problem of common cultural
effects which might be important, considering that the data have been collected from 17
centers world-wide. The deciphering of genes versus environment in family-based study
designs can be addressed either by study design or analytical methods. In design, the simplest
method to infer cultural influences would be twin studies. However, twins are usually raised
in the same environment, and while separated twins may address this issue of cultural effects,
there are obvious practical difficulties for rare traits or diseases in identifying, recruiting and
measuring exposures in sufficient numbers of affected separated twins. Analytic approaches
to the problem require the collection of well-standardized environmental data, which is more
properly addressed in a separate study than the familial aggregation study described here.
Indeed, Khoury, Beaty, and Cohen haved stated that “Statistical modeling on family data
without regard to such environmental factors cannot satisfactorily consider, adjust for, or
rule out the presence of specific environmental agents affecting risk unless such information
is systematically collected and examined for relatives as well as probands” (Khoury et al.,
1993, p.192). Although in theory this could have been possible in the first phase of the
IOIBD study, there would be significant resource limitations. Furthermore, the median
duration of disease in this cohort is long (16.9 years) and thus it is unlikely that retrospective
environmental data collection would be either practical or accurate.

In epidemiology, genetic heterogeneity refers to the phenomenon whereby multiple gene
loci or mutations may lead to the same phenotype. Based upon results of many genetic link-
age studies, association studies and genome-wide scans in different populations world-wide,
this phenomenon is well recognized as regards IBD susceptibility, especially CD (Rioux et al.,
2007; Negoro et al., 2003). Certainly, genetic heterogeneity is present in this cohort of multi-
center subjects but without genotyping analysis, it is impossible to determine to what extent
this has occurred. Nonetheless, our demonstration of familial concordance in traits remains
valid, regardless of the degree of genetic heterogeneity. Population stratification is a similar
yet distinct situation, where ethnicity may be considered as a confounder in genetic associ-
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ation studies. In this case, a particular genotype under study may appear to be associated
with the outcome, but the association may be confounded by the genotype’s association with
a particular ethnicity. This issue is possibly a concern in the secondary analyses of familial
aggregation, where particular candidate genes are considered. The permutation method of
concordance measurement described here cannot distinguish true risk factors from such con-
founders, but it has been convincingly argued that population stratification may not be of
major importance when the number of ethnic groups in a study population is high, and that
several alternative explanations are likely to account for failure to demonstrate significance
in those studies where population stratification has been proposed as a problem (Wacholder
et al., 2000). Obviously, further analyses of this IBD cohort should consider the issue further.
A first step might involve matching or adjustment of cases and controls by ethnicity across
the multiple study centers. However, if a true ethnic confounding exists, only adjusting
for ethnicity is unlikely to satisfactorily eliminate bias due to population stratification. For
further discussion of these issues, the reader is referred to Wacholder et al. (2002).

The proposed permutation method has been successfully applied to the IOIBD Multiplex
Families Project. It is very flexible and has been adapted to solve practical issues such as
non-dichotomous traits, special subgroups of relatives, and association of concordance in trait
1 and in trait 2. Although the permutation method is limited in its capability to incorporate
covariates, it requires fewer assumptions and so can provide analysis complementary to the
model based methods. The method is easy to implement in various computing environments.
We hope to see more refinements, variations, and applications of this method in testing
concordance of clinical traits in familial studies.

APPENDIX

A. DERIVATION OF THE MEAN AND VARIANCE OF Nj

Recall that the family size is k and the prevalence of the clinical characteristic is p. The
number of concordance pairs N, depends on W, the number of members with Z = 1. The
distribution of W is binomial with parameter k and p. For W <2, N, =0. For W = ¢ > 2,

Ni = (%). Therefore,
E(Ny) = Zk: <;) <§)pi(1 —p)=,

1=2

Simplification gives E(Ny) = (£)p?. The variance of Ny, is obtained by getting E(N?) first,

B(N;) = Xk: <;)2(§)p"(1 —p)*0.

i=2
Simplification and E(Ny) gives (2.1).
B. SAMPLE MATHEMATICA CODE

The exact method can be implemented using software with symbolic calculation. A sample
Mathematica session is presented in Figure 3. A function myPGF is defined to return the PGF
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nyPGF[p_, k_, n_]:=

Kk n

(1-p)+k (1-p) ™ pa ) (1-p)7 K pl Z7 1D Binomal [k, ]
i=2

CoefficientlList [nyPGF[0.2, 3, 20] nyPG-[0.2, 4, 5], Z]

{0.0410308, 0.126389, 0.186346, 0.188784, 0.157975, 0.116801, 0.0774566, 0. 0474146,
0. 027437, 0.0150296, 0.00784785, 0.00395114, 0.00191655, 0. 000897335, 0. 000408655

. 000180867, 0. 0000778016, 0.0000327143, 0. 0000134341, 5.38326x10°%, 2.11494x10°8,
.13887x 1077, 3.064x1077, 1.1331x1077, 4.11233x10°8, 1.46236x10°®, 5.11474x107°,
.75774x107°, 5.92444x1071°, 1.9656x1071°, 6.4123x10711, 2.05265%x10°1, 6.47109x107%2,
.00661x10°%2, 6.10655x107*%, 1.83057x10°%3, 5.39786x101*, 1.56185x10%*,
L4517 x 10715, 1.24787x107'%, 3.43104x10°%®, 9.29172x10°Y7, 2.47365x 10717,
. 45548 x 10718, 1.65898 x10718, 4.18847x1071°, 1.03581x107'°, 2.52193x10°%°,
.02753x10721, 1.40983x1072', 3.24618x1072?, 7.33x1072%, 1.61821x102%, 3.51703x10 %,
.48709x10725, 1.55669x1072%, 3.18762x1072%, 6.38282x107?7, 1.24698x107%7,
.40117x 1072, 4.51062x1072°, 8.25913x107°%°, 1.49254x107%0, 2. 62164 x1073!,
.48611x107%2, 7.59107x10°3%, 1.24117x10°33, 1.97835x10°3*, 3.12587 %10,
.72649x107%8, 6.99338x10°%7, 1.02783x10°%, 1.42295%x10738, 1.94922 %1073,

3 4

7 6

3 2

R RPRRPRONPR

. 30391 x10°%,
. 39541 x 10748,
. 30762 x 10752,

. 64761 x 10749, .19363x107%%, 5.19312x107*3, 5.70255x 104,
L77979x 10745, .9216x 10747, 7.96034x10*®, 6.9467 x107*°, 5.48562x10°%,
.41214 x 10751, .80471x10°%%, 2.90142x10°°*, 0, 1.20893x10°%¢}

OONDEBREANNOOOPSANE OO

Export ["p-0.4-n-200. csv", CoefficientList [nyPGF[0.4, 3, 200], Z], "Table"]

p-0.4-n-200. csv

Figure 3: A sample Mathematica session to obtain the exact distribution of the number of
concordant relative pairs in 20 families of size 3 and 5 families of size 4.
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of X, for n families of size k with clinical character prevalence p. For example, assuming
p = 0.2, myPGF (0.2, 3, 20) gives the PGF of the number of concordant relative pairs in
20 families of size 3; myPGF (0.2, 4, 5) gives the PGF of the number of concordant relative
pairs in 5 families of size 4. Taking CoefficientList of product of these two terms gives a
table of the probabilities that the number of concordant relative pairs X in 20 families of size
3 and 5 families of size 4 takes value z = 0,1,2,.... These probabilities are then dumped
into an external file by Export.
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